
Dynamic Processor Modes in Puma�Arthur B. Maccabemaccabe@cs.unm.eduDepartment of Computer ScienceThe University of New MexicoAlbuquerque, NM 87131 Rolf Riesenrolf@cs.sandia.govSandia National LaboratoriesOrganization 9223Albuquerque, NM 87185-1110David W. van Dresserdwvandr@cs.sandia.govSandia National LaboratoriesOrganization 9223Albuquerque, NM 87185-1110July 23, 1996AbstractIn this paper, we describe the dynamic processor modes supported by Puma, an operatingsystem for massively parallel computing systems. Puma was designed for computing systemsthat consist of thousands of nodes connected by a communication network with high bandwidthand low message-passing latency. The individual nodes of such a system may have multipleprocessors with a shared memory. This presents the potential to exploit parallelism at twolevels: parallelism between nodes and parallelism within a node.In this paper, we describe the mechanisms we have developed to support library and appli-cation writers in their e�orts to exploit the parallelism provided by a single node. Following thePuma philosophy, the mechanisms provided by the kernel represent a very thin (but safe) levelabove the actual hardware. In addition to the kernel mechanisms, we also describe higher-levellibrary functions that application writers or people writing runtime systems can use.1 BackgroundThe Puma [11, 13] operating system was designed to support high performance computing on mas-sively parallel computing systems. We are primarily interested in supporting applications thatconsume a large portion of the resources o�ered by such a computing system (e.g., memory, proces-sor cycles, communication bandwidth, etc.) for several hours or, perhaps, days. Examples of suchapplications include climate modeling and simulations of nuclear explosions.High performance computing involves the management of at least one critical resource. Forsome applications the critical resource may be memory, for others it may be processor cycles, forstill others the critical resource may be communication bandwidth. To support these applications,the Puma kernel provides a very thin, but safe, interface to the underlying hardware. In this respectPuma is similar to the MIT Exo kernel [5], which also attempts to push as much functionality as issafely possible up to the user level. Puma is not taking this idea to the same extremes as the Exo�This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000.1

kernel design does. Performance critical functions, such as the handling of incoming messages andthe mechanisms that enforce the policies made at user level, all reside within the Puma kernel.A high-level interface usually simpli�es application development by providing a view that bettermatches the computational model used in the application. However, the implementation of a high-level interface, by de�nition, provides management for one or more resources. As an example,implementations of high-level languages provide management for registers, memory layout, andother resources provided by the machine. If the implementation of an interface manages a criticalresource, this management may conict with the application's management needs. When such aconict arises, the application may not be able to meet its performance goals. The thin interfaceprovided by the Puma kernel should minimize the impact of these conicts.Because the Puma kernel only provides a low-level interface, this interface may be obscure andcumbersome for many application programmers. Libraries provide interfaces with semantics thatbetter match the models used by application programmers. Because these higher-level interfacesare in the libraries, they can be used when appropriate and easily circumvented when performanceconsiderations mandate more direct management of the resources.Current generation massively parallel computing systems have thousands of nodes connected bya high-performance communication network. The communication networks have bandwidths on theorder of hundreds of megabytes per second with message passing latencies on the order of microsec-onds. While there may be some hardware support for distributed shared memory, communicationbetween nodes is essentially based on explicit message passing.In Puma, we manage the nodes in a massively parallel system using \space sharing." Usersallocate a collection of nodes for their applications at load time. Puma supports multitasking on thenodes; however, the tasks running on a node are all running on behalf of a single user (and presumablyon behalf of a single application). This approach lets the application programmer manage a knownset of resources on each node. If we were to combine tasks from di�erent users on a single node,as is done in traditional multitasking operating systems, the resources provided by the node to agiven task would be dependent on the current mix of tasks. This situation would make it virtuallyimpossible for the application programmer to manage the resources as needed.Each node in a massively parallel computing system may have a small collection of processors(two to four) with a shared memory [12]. This organization provides two levels of parallelism to bemanaged: parallelism among the processors in a node, and parallelism among the nodes within thesystem.In the Puma programming model an application consists of a collection of tasks that communicateusing explicit message passing. Each task runs on a single node of a massively parallel system. Whena task is distributed among the processors on a node, the portion of the task that runs on a processormight naturally be called a \thread." We have intentionally avoided this terminology because of thesemantic baggage that is typically associated with the term thread.In Puma, the processors on a node are gang scheduled : when a task is scheduled for execution, allof the processors on the node are available to the scheduled task. We do not attempt to run di�erenttasks (from the same application) on the individual processors of a node. When an application taskis running on a node, all of the processors share a common address space (page table).Before we discuss the dynamic models of processor usage supported by Puma, we consider virtualnodes. When there are multiple processors on a node, one possible use of the processors is to haveeach processor emulate a virtual node. Puma supports virtual nodes. For the most part, virtualnodes act just like physical nodes. One di�erence is that the text segment of a single physical nodecan be shared (read-only) by all CPUs on that node|Puma does not currently support any otherform of sharing across di�erent address spaces. Unlike the other multi-processor usage models thatwe describe in this paper, using the processors as virtual nodes is a static decision. The user mustselect virtual nodes when the node is allocated and this selection remains in e�ect until the node isde-allocated.In the remainder of this paper, we describe the mechanisms that support dynamic processor2

usage modes in Puma. In the next section, we describe the processor modes that are supportedfrom an application perspective. In Section 3, we describe the Puma kernel structures and portionsof the kernel interface that support dynamic processor usage modes. In Section 4, we describe thelibrary interface that we have developed to better match the application programmer's model ofprocessor modes. Finally, in Section 5 we describe related work.2 Processor ModesIn Puma, all of the resources on a node are managed by a single processor, the system processor. Thisis the only processor that performs any signi�cant processing in supervisor mode. The remainingprocessors run application code and only rarely enter supervisor mode. These processors are calleduser processors. This arrangement produces a slight asymmetry in the performance of the processorsand may complicate the application's management of processor cycles. However, it greatly simpli�esthe structure of the Puma kernel and makes more of the processor cycles available to the applications.2.1 Heater ModeThe simplest processor usage mode is to run both the kernel and application task on the systemprocessor. We call this arrangement \heater mode" because the user processors only provide heat.Figure 1 illustrates heater mode for two processors.
KernelApplication Mailbox@@R��	
Systemprocessor Userprocessor

Figure 1: Heater ModeThe \mailbox" shown in Figure 1 is used to pass arguments from the application task to thekernel and back. In Puma, each task has a mailbox. The use of a mailbox instead of the callstack complicates the application's interface to the kernel, but improves overall performance andgeneralizes to the other processor usage modes easily. The performance improvement stems fromthe fact that the kernel does not need to validate the stack space used for parameter passing|themailbox is in a �xed location and known to be at a valid address. The added complexity is easilyhidden in the library calls that eventually result in a kernel call.The mailbox provides the following �elds:� space for the arguments passed to the kernel,� space for the kernel return value,� a \mailbox busy" ag,� a \run kernel" ag, and 3

� a \kernel done" ag.When the processors are used in heater mode, each kernel call copies the arguments to themailbox, sets the \run kernel" ag in the mailbox, and issues a trap (software interrupt) instructionto invoke the kernel. When the kernel has �nished processing the request, it sets the return statusin the mailbox, sets a \kernel done" ag in the mailbox, and re-establishes the context of the task.(The \mailbox busy" and \kernel done" ags are not necessary in this mode; their importance willbecome apparent when we describe the remaining modes.)Heater mode does not o�er any signi�cant advantages for the application programmer. However,this is the easiest mode to make operational and is, for historical reasons, the default processormode.2.2 Kernel-Coprocessor ModeFigure 2 illustrates kernel-coprocessor mode. In this processor arrangement, the kernel runs on thesystem processor and the application task runs on the user processor. When the processors arecon�gured in this mode, the kernel polls the external devices and the application mailbox, lookingfor work.
Kernel ApplicationMailbox ��
Systemprocessor Userprocessor

Figure 2: Kernel Coprocessor ModeWhen the processors are used in kernel-coprocessor mode, each kernel call clears the \kerneldone" ag, copies the arguments to the mailbox, sets the \run kernel" ag in the mailbox, and pollsthe \kernel done" ag. When the kernel notices that the \run kernel" ag has been set, it willprocess the request. When it has �nished, the kernel sets the return status in the mailbox, and setsthe \kernel done" ag in the mailbox.Because the time to transition from user mode, to supervisor mode, and back to user mode canbe very signi�cant, this mode o�ers the advantage of fast kernel calls. To support this claim, wemeasured the time taken in a kernel call for Puma running on the Intel i860 processors of an IntelParagon. When the application and kernel share the same processor (heater mode), a null kernelcall1 takes 5.5 microseconds. When the kernel runs on a separate processor, the same kernel callonly takes 3.8 microseconds.2.3 User-Coprocessor (cop) ModeFigure 3 illustrates user-coprocessor mode. In this mode, the system processor and user processorsboth run kernel and application code. However, the kernel code running on the user processor does1The null kernel call does not perform any processing, it simply returns to the application.4

not perform any of the resource management activities, it only noti�es the system processor whenthere is a request in the mailbox.
KernelKernelApplication ApplicationMailbox@@R ��	��	

Systemprocessor Userprocessor
Figure 3: User Coprocessor ModeWhen the processors are used in user-coprocessor mode, each kernel call �rst waits until the\mailbox busy" ag is clear and sets this ag (this can be implemented at user level using a testand set or swap operation). Next, the task clears the \kernel done" ag, copies the arguments tothe mailbox, sets the \run kernel" ag in the mailbox, and issues a trap instruction. The kernel onthe user processor handles the trap by issuing an interrupt to the system processor and returning tothe application which then polls the \kernel done" ag. When it has �nished handling the request,the kernel on the system processor sets the return status in the mailbox, sets the \kernel done" agin the mailbox and restores the context of the task running on the system processor. When therequesting task notices that its request has been completed, it copies the return value and clears the\mailbox busy" ag.The advantage of this mode is that it provides more processor cycles for the application task.Admittedly, the two processors are not symmetric: the part of the task running on the systemprocessor will not progress as rapidly as the portion of the task running on the user processor.This may complicate the application's management of processor cycles; however, a fully symmetricsolution would have increased the complexity of the Puma kernel and decreased the total numberof cycles available to the application.2.4 Using More Than Two ProcessorsThe processor usage modes that we have described are based on two processors. If a node hasthree or more processors, the essential concerns are whether a portion of the task shares the systemprocessor with the kernel and whether there are multiple processors running portions of the task.Having a portion of the task running on the system processor provides additional processor cycles,but requires that applications issue a trap instruction to activate the kernel on the system processor.Having multiple processors running portions of the task also provides more processor cycles, butrequires that the portions of the task wait while the shared mailbox resource is being used byanother processor. (We are looking into the possibility of having a mailbox per task per processor.)2.5 Dynamic SwitchingOne of the signi�cant advantages of kernel-coprocessor mode is improved message passing perfor-mance. When a portion of the task is running on the system processor, the arrival of a messagegenerates an interrupt which transfers control from the task to the kernel. Similarly, to send amessage the task must trap into the kernel. These transfers of control to the kernel and back to the5

task on a single processor are a signi�cant portion of the latency associated with message passing.By only running the kernel on the system processor, the application programmer can avoid thesetransfers and thereby reduce the latency of message passing. As an example, message passing laten-cies on the Intel Paragon drop from 25 microseconds to 17 microseconds by using the equivalent ofkernel-coprocessor mode.Thus, kernel-coprocessor mode is bene�cial for applications that are bounded by message passinglatencies. Similarly, user-coprocessor mode is bene�cial for applications that are bound by theavailability of processor cycles. Many applications transition between phases when they are boundby message passing performance and phases when they are bound by the availability of processorcycles. To support these applications, Puma provides mechanisms that allow the application toswitch between the various modes dynamically.3 Kernel Structures and InterfaceThe portion of the kernel interface that supports dynamically changing the processor mode is de�nedby a single kernel call and a small collection of shared data structures. The kernel call is used toallocate or de-allocate a processor. The shared data structures control the portion of the task beingrun by a processor.In Puma, the process control block (PCB) for an task is split between the kernel and the appli-cation. The two pieces are called the application's PCB and the kernel's PCB. The application'sPCB can be read and updated when a processor is in user or supervisor mode. The kernel's PCBcan only be read and updated when a processor is in supervisor mode.Among other things, the application's PCB has a full processor context for each processor. Eachprocessor context includes things like the program counter, stack pointer, condition codes, andso forth. Leaving the processor contexts in a user level data structure makes it possible for theapplication task to build and manipulate processor contexts without invoking a kernel operation.To protect the integrity of the system, privileged portions of the processor state (e.g., processormode) are set to safe values when the kernel loads one of these processor contexts onto a processor.The kernel's PCB for an task includes a set of ags indicating which processors are currentlyallocated by the task. When an application is scheduled for execution, the dispatch step involvesidentifying the active application and copying the allocated processor ags to a �xed location in thekernel. The system and user processors poll these ags (the system processor also polls for hardwareevents), looking for work. Each of the allocated processors uses the active application's PCB toidentify and load its context. Any unallocated processors continue to poll the allocation ags.When the system processor identi�es the end of an application's time quantum, it sends each ofthe user processors a doorbell interrupt. The user processors respond to this interrupt by savingtheir context in the application's PCB. After they have saved their state, the user processors set aag to indicate that they are ready for the next application and enter a loop waiting for the systemprocessor to establish the next application. Once all of the user processors have saved their states,the system processor saves and clears the processor allocation ags. When the system processorindicates that it has �nished saving the application's state, the user processors return to polling theprocessor allocation ags, waiting for work.Any processor can deallocate any other processor. Deallocating a processor that is not currentlyallocated has no a�ect. If all processors are deallocated the application is terminated.When the system processor is deallocated, it simply stays in the kernel code polling for externalrequests. When a user processor is deallocated, the system processor sets the processor allocationag to indicate that the user processor is no longer allocated and interrupts the user processor. Uponreceiving the interrupt, the user processor notes that it is no longer allocated and simply enters itspolling loop.To run a portion of its code on another processor, a task �rst builds a processor context in its6

PCB. Then it calls the kernel to allocate the processor. This makes it relatively easy for a task toenter user-coprocessor mode.Entering kernel-coprocessor involves deallocating the system processor. Prior to deallocatingthe system processor, the application needs to migrate to one of the user processors. This involvescopying the current context into the appropriate context bu�er, allocating the new user processor,and deallocating the system processor.4 The Library LevelWhile there is nothing conceptually di�cult in building processor contexts, allocating processors,and deallocating processors, the details change from processor to processor and the code is di�cultto debug. To better match the application programmer's expectations, the Puma application libraryprovides the following three routines:int proc migrate(int processor);int proc exec(int processor, void (� code)(void), void �stack);int proc dealloc(in processor);The proc migrate routine is used to migrate a portion of the task from the processor it is currentlyrunning on to the processor identi�ed by the argument. If the target processor is currently allocated,proc migrate returns a nonzero result and the application remains on the processor it was using.Otherwise, proc migrate returns zero and the application will be running on the target processor.The proc exec routine is used to start running a portion of the task on another processor. If thetarget processor is currently allocated, proc exec returns a nonzero result; otherwise, it returns zeroand the application will be running the routine identi�ed by code on the target processor.The proc dealloc routine deallocates a processor. A return value of zero indicates successfuldeallocation. A nonzero return value indicates that the target processor was not allocated. Asshould be obvious, this routine does not return if the target processor is the same as the processoron which the routine is executed.While these routines reect a higher level interface than the interface provided by the kernel, werecognize that they still represent a fairly low-level interface. To use these routines, the applicationprogrammer must still manage stack space for the allocated processors and must keep track of whichprocessors are currently allocated. Here, we expect that a higher level runtime support system, forexample Cilk [3], might be used to hide these details from non-systems programmers.5 Related WorkThe NX message passing system [10] under OSF 1/AD on the Intel Paragon uses one CPU as amessage coprocessor. The implementation di�ers from kernel-coprocessor mode in that only themessage passing primitives are run on the system processor. All other kernel calls are handled bythe user processors. The option to use message coprocessor mode is selected at the time the kernelis compiled. No dynamic recon�guration is possible.The PEACE message-passing kernel [6] runs on MANNA nodes. These nodes have two i860processors sharing a local memory, an I/O interface, and a network connection; much like the nodesof an Intel Paragon. PEACE allows the two processors to be used in one of several modes. Thetwo main modes are message-passing coprocessor mode and asymmetric multiprocessor mode. Theformer mode corresponds to Puma's kernel-coprocessor mode except that the locking of the mailbox7

in shared memory is handled di�erently. The asymmetric multiprocessor mode of PEACE is similarto Puma's user-coprocessor mode. Which mode is being used is determined when the PEACE kernelis con�gured.Remote queues [4] and an active message implementation based on remote queues [7], show thatthe message coprocessor model has its limitations. User de�ned handlers cannot be run on themessage coprocessor because they might dead-lock the node and eventually the whole system. Theactive message implementation avoids this problem by compiling often used handlers directly intothe kernel code that is executed on the system processor.Several studies have looked at the cost of context switches [8, 9, 1]. Our kernel-coprocessor modepreserves the caches and TLBs of the individual CPUs, thereby eliminating one of the main costs ina typical context switch.6 AcknowledgementsStephen Wheat designed and implemented static versions of these processor modes for SUNMOS(Sandia and University of New Mexico Operating System), the predecessor to Puma. Many mem-bers of the Puma team at Sandia and UNM as well as the Lightweight Kernel team at Intel havecontributed to the current design and implementation.We would also like to thank the management at Sandia National Labs who have supported us inour e�orts to develop the SUNMOS and Puma operating systems.References[1] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. Lazowska. Theinteraction of architecture and operating system design. In ASPLOS 91 [2], pages 108{120.[2] Proceedings of the 4th International Conference on Architectural Support for Programming Lan-guages and Operating Systems (ASPLOS), Santa Clara, CA, April 1991. ACM Press, New York.Published as SIGPLAN Notices, volume 26, number 4.[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.Randall, and Yuli Zhou. Cilk: An e�cient multithreaded runtime system. In Fifth ACMSIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP), pages 207{216, Santa Barbara, CA, July 1995. Published as ACM SIGPLAN Notices, volume 30, number8.[4] Eric A. Brewer, Frederic T. Chong, Lok T. Liu, Shamik D. Sharma, and John D. Kubiatowicz.Remote queues: Exposing message queues for optimization and atomicity. In Seventh AnnualACM Symposium on Parallel Algorithms and Architectures (SPAA), Santa Barbara, CA, July1995.[5] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole Jr. Exokernel: An operatingsystem architecture for application-level resource management. In Proceedings of the FifteenthACM Symposium on Operating Systems Principles, pages 251{266, Copper Mountain Resort,Colorado, December 1995. Published as ACM Operating Systems Review, SIGOPS, volume 29number 5.[6] Thomas Garnatza, Ute Haack, Michael Sander, and Wolfgang Schr�oder-Preikschat. Experiencemade with the design and development of a message-passing kernel for a dual-processor-nodeparallel computer. In Proceedings of the Hawaii International Conference on System Sciences(HICSS-29), Maui, USA, January 1996. 8

[7] Lok Tin Liu and David E. Culler. Evaluation of the Intel Paragon on active message commu-nication. In Proceedings of the Intel Supercomputer Users' Group. 1995 Annual North AmericaUsers' Conference, June 1995.[8] Je�rey C. Mogul and Anita Borg. The e�ect of context switches on cache performance. InASPLOS 91 [2], pages 75{84.[9] John K. Ousterhout. Why aren't operating systems getting faster as fast as hardware? InProceedings of the Summer 1990 USENIX Conference, pages 247{256, Anaheim, California,June 1990. USENIX Association.[10] Paul Pierce and Greg Regnier. The Paragon implementation of the NX message passing inter-face. In SHPCC 94, 1994.[11] Lance Shuler, Rolf Riesen, Chu Jong, David van Dresser, Arthur B. Maccabe, Lee Ann Fisk, andT. Mack Stallcup. The Puma operating system for massively parallel computers. In Proceedingsof the Intel Supercomputer Users' Group. 1995 Annual North America Users' Conference, June1995.[12] Tom Thompson. The world's fastest computers. Byte, 21(1):45{64, January 1996.[13] Stephen R. Wheat, Arthur B. Maccabe, Rolf Riesen, David W. van Dresser, and T. MackStallcup. PUMA: An operating system for massively parallel systems. Scienti�c Programming,3:275{288, 1994.

9

